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We investigate how the addition of a large-scale steady motion, either shear or uniform flow, modifies the
magnetic transport properties of a family of chaotic velocity fields with different correlation times. We compute
numerically the kinematic � effect that those flows give rise to and show that it is reduced by the presence of
a large-scale motion parallel to the large-scale magnetic field, except under certain conditions when it can be
slightly enhanced via resonances. The � effect is shown to depend on the nature of the large-scale motion and
on the temporal characteristics of the chaotic flow. These results highlight the strong influence that a shear or
a uniform flow can have on the turbulent transport of magnetic fields.

DOI: 10.1103/PhysRevE.80.046308 PACS number�s�: 47.27.T�, 47.65.Md, 52.25.Fi, 96.60.Jw

I. INTRODUCTION

A. Background

Astronomical observations have revealed that most cos-
mic bodies are magnetically active and possess a global co-
herent magnetic field. In the Sun, for example, this large-
scale component is responsible for the 11-year sunspot cycle.
Such fields are believed to be the result of a “large-scale
dynamo,” whereby inductive motions within a conductive
fluid are able to generate and sustain a magnetic field on
scales larger than their own. This process is traditionally
modeled within the framework of mean-field electrodynam-
ics �MFE�, a turbulence closure theory where small-scale
effects are parametrized by transport coefficients �1,2�. These
include the � effect, which is responsible for the regenera-
tion of poloidal �toroidal� magnetic field from toroidal �po-
loidal� field, and an enhanced turbulent diffusivity or � ef-
fect.

Furthermore, astrophysical plasmas are often character-
ized by the presence of large-scale shearing motions. These
can, for example, take the form of differential rotation, as in
the solar tachocline, a thin layer of strong radial shear lo-
cated at the base of the solar convection zone �3�. Combined
with mean-field effects, shear is an essential ingredient for
large-scale dynamo action. It can lead for instance to an
��-dynamo—the classical model for the solar cycle �1�, to
an “incoherent �-shear dynamo” �see Sec. V C 3�, or to a
shear-current dynamo �see, e.g., �4–6��.

Until recently however the large-scale fluid motions were
often solely included in the mean-field equations, without
their effects on the evolution of the small scales taken into
account. This cannot however be justified in general since a
large-scale shear or a mean flow can dramatically alter the
properties of the small-scale motions and therefore affect tur-
bulent transport, as reviewed below.

B. Effects of shear

A stable shear flow can quench the intensity and transport
properties of the turbulence by distorting and disrupting tur-
bulent eddies, thus accelerating the forward cascade of en-
ergy and enhancing dissipation. Moreover, the presence of a
strong shear impedes transport across its direction; in par-
ticular, transport barriers caused by shear flows are consid-
ered to be indispensable for the improvement of plasma con-
finement in fusion devices �see, e.g., �7–12��.

Similar effects are expected to occur in astrophysical plas-
mas. For example, the problem of transport quenching by
shear in the tachocline has recently been investigated analyti-
cally by Kim and her collaborators. They included complex
physical interactions between turbulence, magnetic fields, ro-
tation �Rossby waves/inertial waves� and differential rota-
tion, whose effects on small-scales are usually ignored in
traditional solar and stellar modeling �13–17�.

Furthermore, in the context of three-dimensional �3D�
forced helical magnetohydrodynamic �MHD� turbulence, an
analytical study by �18� showed that both � and � effects are
severely quenched by a strong shear while being slightly
enhanced for weak shear. This �-suppression by a shear flow
was subsequently observed in numerical simulations by �19�
and a slight increase in � for weak shear was reported by �6�.
Similar results have been obtained for two-dimensional �2D�
MHD turbulence where the severe quenching of magnetic
diffusion by shear predicted by �20,21� has been confirmed
in numerical simulations by �22�, who highlighted the dual
role of shear flows, which quench transport by shearing
while enhancing it by resonance.

C. Effects of a uniform flow

Shear distortion is however not the only mechanism by
which a large-scale motion can affect small-scale turbulence.
Indeed, recent laboratory experiments by �23� show that the
level of turbulence in a 2D flow can also be reduced via
sweeping of the force-generated vortices by the mean flow.

While uniform flows may commonly be regarded to have
no effect due to Galilean invariance, we emphasize that this*alice@maths.leeds.ac.uk

PHYSICAL REVIEW E 80, 046308 �2009�

1539-3755/2009/80�4�/046308�13� ©2009 The American Physical Society046308-1

http://dx.doi.org/10.1103/PhysRevE.80.046308


is not always the case in turbulence where this invariance is
broken by nontrivial external forcing, boundaries, etc �24�. It
is instructive to examine this in more details. For stationary
turbulence with wavenumber k, the transformation to a frame
comoving with a uniform flow U0 gives a nonzero frequency
to the turbulence, �D=U0 ·k, by Doppler shift. The uniform
flow therefore alters the properties of the turbulence, chang-
ing it to wavelike turbulence with frequency �D, thus leading
to a reduction in transport �like Alfvén waves quenching
magnetic diffusion �15,20��. For turbulence with a nonzero
characteristic frequency �0, a uniform flow can induce reso-
nance when �0−U0 ·k=0. This enhances transport since the
overlap of resonant layers is an important source of irrevers-
ibility �in addition to molecular diffusion and stochasticity�,
which is necessary for turbulent transport.

D. Aims and structure of the paper

The previous section emphasizes the important effects
that large-scale motions can have on turbulent transport. The
purpose of this paper is to investigate these issues further by
performing a systematic numerical study of the influence of a
large-scale motion on the � effect driven by a family of
chaotic flows with different statistical properties. We limit
our investigations to the kinematic regime and consider ve-
locity fields of the form

U�x,y,t� = uk�x,y,t� + ULS, �1�

where uk is the small-scale flow and ULS is a steady velocity
field, chosen to be either uniform or sinusoidal to model a
large-scale shear. Since the flows are prescribed, the large-
scale motion does not affect the small-scale velocity field
directly. We are therefore able to investigate how the kine-
matic � effect driven by a small-scale velocity field is altered
by the addition of a large-scale flow through modification of
the small-scale magnetic field only.

We take uk from a family of space-periodic motions pos-
sessing a single spatial scale. Such flows have been utilized
in the studies of transport coefficients since the pioneering
work of �25�. The scalar transport properties of such flows
and how they are affected by a mean motion, or sweep, is
reviewed in �26�. The � effect was determined for steady,
integrable cases by, e.g., �27,28� and the influence of a uni-
form flow was considered in an asymptotic study by �29�.
Another related study by �30� looks at how the dynamo
growth rate is enhanced when a uniform flow is present. The
extension to time-dependent, chaotic flows with no mean has
been considered by �31,32�. In the present paper, we extend
this last model to include the effects of the large-scale mo-
tion ULS. We show that the � effect is reduced as the mag-
nitude of ULS is increased, except for certain values when
resonance conditions are met. We also demonstrate that the
precise variations in � depend on the large-scale motion used
�shear or uniform flow� and on the time correlations in uk.

The remainder of this paper is organized as follows. In
Sec. II we review the basics of mean-field electrodynamics
and present an analytical calculation of the � effect for an
idealized turbulent flow, in the presence of a uniform flow
and under the first order smoothing approximation. Although

it is performed under very restrictive assumptions, this cal-
culation illustrates some essential features of the resonances
mentioned above. In Sec. III we setup both the shear and the
uniform flow models and explain the method we use to de-
termine the � effect. Since the chaotic properties of a flow
influence its transport properties �see, e.g., �33��, we describe
in Sec. IV how the Lagrangian chaos present in uk is modi-
fied by the addition of a large-scale motion. Finally, we
present the results of our numerical MHD simulations in Sec.
V and conclude in Sec. VI.

II. MEAN-FIELD ELECTRODYNAMICS IN THE
PRESENCE OF A LARGE-SCALE FLOW

A. General framework

The evolution of a kinematic magnetic field B embedded
in a conducting fluid with velocity U is given by the dimen-
sionless magnetic induction equation

�tB = � � �U � B� + Rm−1�2B , �2�

where Rm is the magnetic Reynolds number. In the mean-
field paradigm, B is decomposed into the sum of its mean
and fluctuating parts �B�+b, where � · � denotes a suitable
averaging operation; similarly, U= �U�+u. The evolution
equations for the mean and fluctuating magnetic fields are
then given by

�t�B� = � � E + � � ��U� � �B�� + Rm−1�2�B� , �3�

and

��t − Rm−1�2�b − � � �u � b − E�

= � � �u � �B� + �U� � b� , �4�

respectively, where E= �u�b� is the mean electromotive
force �emf�. Since Eq. �4� is linear in �B�, E can be expanded
in terms of the mean field �B� and its gradient as

E = � · �B� + � · ��B� + ¯ . �5�

This expression defines the transport pseudotensors � and �,
which depend on the properties of the flow U and on Rm
�1,2�. Substitution of Eq. �5� into Eq. �3� leads to a closed
evolution equation for the mean magnetic field, which can be
solved in isolation provided the transport tensors are known.
Here we focus on the � effect, which corresponds to the
symmetric part of � and is nonzero only if U lacks reflec-
tional symmetry, e.g., if it is helical. It can be determined by
solving Eq. �4� for a constant mean field B0. If we also con-
sider a constant mean flow U0, Eq. �4� becomes

��t − Rm−1�2�b − � � �u � b� = �B0 · ��u + �U0 · ��b , �6�

while Eq. �5� reduces to E=� ·B0.

B. Resonance effect

In this section, we use the classical calculation of the �
effect driven by a small-scale, homogeneous, stationary, and
isotropic turbulent velocity field u�x , t� detailed in �1� to il-
lustrate how resonances arise when a uniform flow U0 is

ALICE COURVOISIER AND EUN-JIN KIM PHYSICAL REVIEW E 80, 046308 �2009�

046308-2



present. We use the first-order smoothing approximation
�FOSA�, which is valid for Rm�1 or Sr�1, where the
Strouhal number Sr is the ratio of the correlation time to the
turnover time of the turbulence. FOSA is unlikely to be
strictly applicable to astrophysical situations, where Rm�1
and Sr�1; nevertheless the calculation below provides a
useful insight into the behavior of the � effect in the pres-
ence of a uniform flow. Here we consider dimensional quan-
tities, so formally, we use the magnetic diffusivity � instead
of the magnetic Reynolds number Rm.

The Fourier transform of the turbulent motion u�x , t� is
given by

ũ�k,�� =
1

�2	�4� � u�x,t�e−i�k·x−�t�dxdt . �7�

By assuming that the statistics of u�x , t� are stationary and
homogeneous, we can express its correlation function in
terms of the spectrum tensor 
ij�k ,�� as

�ũi�k,��ũ j
��k,��� = 
ij�k,����k − k����� − ��� , �8�

where � · � is an ensemble average and the superscript � de-
notes the complex conjugate. For an isotropic helical flow,
the spectrum tensor consists of a combination of the energy
and helicity spectrum functions, E�k ,�� and F�k ,��, respec-
tively, in the following form:


ij�k,�� =
E�k,��
4	k2 �k2�ij − kikj� + i

F�k,��
8	k2 �ijkkk. �9�

In order to compute the mean emf, we use FOSA to simplify
Eq. �6� by neglecting the interactions between small-scale
quantities. In Fourier space, it becomes

�− i� + �k2 + i�U0 · k��b̃ = i�B0 · k�ũ , �10�

leading to the mean emf

Ei =� � � � − i�B0 · k���ijk�ũj�k,��ũk
��k�,����

�k�2 + i�U0 · k� − ���

� e�i�k−k��·x−i��−���t�dkdk�d�d��. �11�

Using Eqs. �9� and �8�, we can simplify Eq. �11� to find that

�ij = −
1

4	
� � kikj

k2

F�k,��
�k2 + i�U0 · k − ��

dkd� . �12�

For simplicity, we now assume that the turbulent velocity
field has a single length scale 1 /k0, i.e., F�k ,��=��k
−k0�F���, with a Lorentzian frequency spectrum of the form

F��� =


�� − �0�2 + 2 . �13�

Here  is the decorrelation rate, which measures the disper-
sion of the frequencies around the characteristic frequency
�0 in F��� and thus characterizes the stochasticity of the
turbulence.

For U0=U0ŷ and B0=B0ŷ, �22, which is the only non-
trivial component of the � tensor, can be shown to become

�22 = −
k0y

2

4k0
2

�k0
2 + 

��k0
2 + �2 + �U0k0y − �0�2 , �14�

where we have used complex integration and the fact that �22
is a real quantity. It is clear from Eq. �14� that for given �0,
, k0 and �, �22 takes its maximum value when U0 satisfies
U0k0y −�0=0, i.e., when the Doppler shifted frequency van-
ishes. Furthermore, as U0→�, �22 is significantly reduced,
scaling as U0

−2. This dependence on U0 is reminiscent of the
quenching of transport ��−2 in wavelike turbulence with fre-
quency � �17�. This may not be so surprising since, as ex-
plained in Sec. I C, a uniform flow introduces new frequen-
cies in the turbulence via Doppler shift and, for large U0,
these frequencies dominate.

Equation �14� also shows that the � effect depends on the
characteristics of the turbulence: frequency �0, stochasticity
, wavenumber k0 and on the magnetic diffusivity �. In par-
ticular, we note that irreversibility, through either finite
Ohmic dissipation ���0� or stochasticity ��0�, is re-
quired for �22 to be nonzero when U0k0y −�0�0. That is,
when � and  tend to zero, �→0 except if there is a reso-
nance point in the domain of interest, which gives a nonzero
� effect with the value

�22 = −
k0y

2

4k0
2��U0ky − �0� . �15�

We would therefore expect resonances to be more pro-
nounced for high conductivity and long correlation times.
However, the validity of the first order smoothing approxi-
mation used to derive Eqs. �14� and �15� becomes question-
able in this limit.

Finally, we note that similar results, including Eq. �14�,
still hold approximately when U0 is not uniform provided it
varies on scales large compared to the turbulence.

III. MODEL AND METHOD

In this section, we describe the flow �1� used in our nu-
merical simulations. We first detail the small-scale, chaotic
flows uk, then we introduce successively the shear and the
uniform flows used to model the large-scale motion ULS.
Finally, we explain how we determine the � effect.

A. Family of chaotic flows

The chaotic flows we use are based on a motion of the
form

u�x,y,t� = ��y�,− �x�,− �� , �16�

with

��x,y,t� =	3

2
�cos
x + � cos��t + ��t���

+ sin
y + � sin��t + ��t���� . �17�

For ��t�=0, the motion is time-periodic and corresponds to
the Galloway-Proctor CP-flow �34�. In this case, although
Eq. �17� seems to involve a single frequency �, the spectrum
of the CP-flow contains not only � but also its harmonics
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n�, for all integers n. The amplitude of the nth harmonic
roughly decreases ��Jn����2 as n increases, where Jn is the
nth order Bessel function �35�. Since �Jn�2 decreases rapidly
with increasing n, the contributions from the first few har-
monics only are expected to be important.

The time-dependent phase ��t� is a piecewise constant
function, which varies over an adjustable timescale �; for �
=�, ��t� does not change, reducing Eq. �17� to the CP-flow
�see �36� for a more detailed description of the model�. We
use the value of �, which can be related to −1 in Eq. �14�, as
a measure of the degree of time decoherence in the flow. This
model was introduced by �31� in order to study systemati-
cally the influence of time decorrelations on the � effect.
Related studies have used “renovating flows,” which are ran-
dom velocity fields, renewed after a characteristic time � and
more amenable to statistical analysis �see, e.g., �37–39� and
references therein�. Alternatively, stochasticity can be intro-
duces in the motion �16� by randomizing the amplitude of its
components, as reported in a recent study by �40�; this ap-
proach is however not pursued here.

Spatially, the CP-flow consists in a 2	-periodic array of
helical cells with a single well defined length scale, corre-
sponding to the size of the computational domain. For such
time-dependent, space-periodic velocity fields, it is natural to
define the averaging operation as

�u� =
1

4	2T
�

0

T �
0

2	 �
0

2	

u�x,y,t�dxdydt , �18�

for a sufficiently large time T.
In the present problem, we are interested in the effects of

a large-scale motion on the transport properties of a small-
scale chaotic flow. We thus generalize the motion �16� by
reducing its length scale to 2	 /k, where k is an integer larger
than 2. To this end, we define the flow uk by

uk�x,y,t� = ��y�k,− �x�k,− rk�k� , �19�

with

�k�x,y,t� = Ak�cos
kx + �k cos��kt + �k�t���

+ sin
ky + �k sin��kt + �k�t���� , �20�

where the phases �k�t� change over a timescale equal to �k.
The flow uk corresponds to a k�k array of helical cells in a
2	-periodic domain, as shown on the top left-hand panel of
Fig. 1, which resembles a snapshot of the streamlines of uk
for k=4. In order to ensure that the results obtained for k
�1 can be meaningfully compared to existing results for k
=1, we rescale the k-dependent quantities so that the kinetic
energy and the � effect are independent of k. Following �41�,
which contains a detailed description of the rationale for the
scalings, this can be achieved by taking

Ak =	3

2
/k, �k = �, �k = k�, �k = �/k, rk = k . �21�

The relevant magnetic Reynolds number is that based on the
scale of uk; it is defined as Rmk=Rm /k, where Rm is the
magnetic Reynolds number based on the total system size.

The numerical results in Sec. V are given exclusively in
terms of Rmk.

Finally, we note that for any k and �k, Eq. �18� gives

�uk� = 0, �uk · � � uk� = − 3k ,

�uk2� = 3, �� � uk2� = 3k2. �22�

Therefore, the relative kinetic helicity defined by

H�u� = ��u · � � u��/��u2��� � u2��1/2, �23�

for a flow u, is maximum �equal to 1� for the flows uk.
We restrict our numerical simulations to the case �=�

=1 and vary the parameters k, �, and Rmk. Within this model,
we are able to generate chaotic flows on a scale �k−1 and
whose time correlations can be arbitrarily varied by changing
the value of �.

B. Large scale flows

1. Shear model

We model the large-scale shear flow by choosing ULS
=US sin xŷ, so that Eq. �1� becomes

U�x,y,t� = Ush�x,y,t� = uk�x,y,t� + US sin xŷ . �24�

The averaging rule �18� implies that for k�1 we have

�Ush� = 0, �Ush · � � Ush� = − 3k ,

(b)(a)

(d)(c)

FIG. 1. Snapshot of the streamlines of Ush�x ,y , t� for increasing
values of US: �a� 0.05, �b� 0.5, �c� 1, and �d� 3. The solid �dotted�
lines correspond to positive �negative� values.
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�Ush2� = 3 +
US

2

2
, �� � Ush2� = 3k2 +

US
2

2
. �25�

The relative kinetic helicity H�Ush� is thus a decreasing
function of US.

Figure 1 presents snapshots of the streamlines of Ush in
the xy plane for increasing values of US. The cellular pattern
characteristic of the CP-flow is clearly visible for weak shear.
As US increases, the cells gradually give way to channels
aligned with the direction of the shear flow.

In this model, resonances can occur when n�k−USk�0
for any integer n; Eq. �21� implies that this condition is in-
dependent of k and becomes

US � n with n = 1,2,3 . . . . �26�

This estimate is based on the maximum value of the shear
amplitude. Since the latter depends on x, however, for a
given frequency �, the resonance condition will be satisfied
in finite regions of space for a range of values of US, thus
leading to a broad resonance around US�n.

2. Uniform flow model

For the uniform flow model, we simply take ULS to be a
constant, uniform flow U0, of magnitude U0=US /	2, di-
rected along the y axis. The velocity field �1� therefore be-
comes

U�x,y,t� = Uun�x,y,t� = uk�x,y,t� + US/	2ŷ . �27�

This choice ensures that for both models the large-scale mo-
tion is in the y direction and that �Uun2�= �Ush2�. Using
Eq. �18�, we find that for k�1

�Uun� = U0, �Uun · � � Uun� = − 3k ,

�Uun2� = 3 +
US

2

2
, �� � Uun2� = 3k2. �28�

The relative kinetic helicity H�Uun� is thus a decreasing
function of US but remains independent of k. Owing to the
rescaling �21�, the � effect here is also independent of k and
therefore, we mainly use k=1 in our numerical simulations.

Figure 2 shows snapshots of the streamlines for flow �27�
and increasing values of US. The cells characteristic of the
CP-flow are progressively replaced by streamlines aligned
with U0 as the latter increases in magnitude.

In this model, we expect to see resonances when n�k
−U0k=n�k−USk /	2�0 for any integer n. Using Eq. �21�,
this condition becomes

US � n	2 with n = 1,2,3. . . �29�

and is independent of k.

C. Determination of the � effect

To determine the � effect for the shear model, we solve
Eq. �6� with u=Ush, given by Eq. �24�, and U0=0. Clearly, in
this model, the value of � depends on the scale separation
between Ush and uk, i.e., on k. To determine the � effect for

the uniform flow model, we simply solve Eq. �6� with u
=uk and U0�0.

In all cases, the initial condition is b�x ,0�=0. Since the
motions considered are independent of z, the small-scale
field b�x ,y , t� solution to Eq. �6� is generated by the distor-
tion of B0 only �Cowling’s theorem precluding any dynamo
action �42��. As a result, b and E are linearly and homoge-
neously related to the mean field B0 and the � effect is un-
ambiguously defined by Eq. �5�. Another advantage of our
model is that since the calculation of the � effect reduces to
a 2D problem, it is efficiently solved numerically, even for
high values of Rm and on large computational domains.

The velocity fields we consider are independent of z, as a
results, the � effect they drive acts solely in the xy plane and
we can restrict our study to the 2�2 part of � relating hori-
zontal quantities. The CP-flow defined by Eqs. �16� and �17�
is maximally helical, and is thus a good candidate for a
strong � effect. It is invariant under a 90° rotation around the
z axis with appropriate shifts in space and time. In the ab-
sence of a large-scale flow, the � tensor, as a mean quantity,
is similarly invariant and can be written as �ij =��ij −�ijk
�for more details see, e.g., �36��. The value of � is simply
calculated by solving Eq. �6� with U0=0 and B0=B0x̂ or B0ŷ;
in the latter case, we have �=EyB0y

−1. The � effect in the
CP-flow has been determined for different values of the pa-
rameters �, � and Rm �31,32�. As mentioned above, we fo-
cus here on the case when �=�=1. This choice ensures that
the CP-flow is strongly chaotic �43� and possesses a strong
kinematic � effect for most values of Rm. The same consid-
erations apply to the flows uk as � is independent of k.

(b)(a)

(d)(c)

FIG. 2. Snapshot of the streamlines of Uun�x ,y , t� for increasing
values of U0: �a� 0.05, �b� 0.5, �c� 1, and �d� 3. The solid �dotted�
lines correspond to positive �negative� values.
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As soon as we introduce the large-scale motion ULS, the
symmetry between the x and y directions is lost, with �11
��22 in general. For our study, we exclude the possibility of
any direct interaction between the large-scale velocity and
magnetic fields. This is trivially ensured in the uniform flow
model since both large-scale fields are constant vectors. For
the shear model however, we need to choose the configura-
tion of B0 such that �B0 ·���US sin xŷ�=0. We thus take B0
=B0ŷ so that the mean field is parallel to the shear, and
determine �22=EyB0y

−1. All our simulations are restricted to
the case when B0 is aligned with ULS. In the remainder of
this paper, we drop the subscript and refer to �22 as �.

IV. CHAOTIC PROPERTIES OF THE FLOWS

For �=O�1� and �=O�1�, the CP-flow displays substan-
tial regions of Lagrangian chaos. We describe here how these
are modified by the addition of a large-scale motion and by
time decorrelations. Figs. 3 and 4 present density plots of the
finite-time Lyapunov exponents �taken after 25 time units� in
the shear model, with k=4, for increasing values of US and
for �=� and 2	, respectively. For �=� and US=0, the den-
sity plots show the pattern of laminar islands and chaotic
regions characteristic of the CP-flow �see the top left-hand
panel of Fig. 3�. As US increases, the chaotic regions become
wider as the transport barriers formed in uk are destroyed by
the shear, which connects different ergodic regions. When
the shear is strong enough to dominate over the small-scale
flow, chaotic regions become separated by laminar channels
oriented along the y direction �see the plot for US=3 in Fig.
3�. Similar observations can be made for �=2	 �Fig. 4�;
however, owing to the increase in stochasticity, the laminar
islands and channels are less pronounced. In particular, there

are no remaining islands for US=1 due to the combined ef-
fects of time decorrelations and shear. For both values of �,
we observe that the most uniform spatial distribution of
Lyapunov exponents is found when the value of US is close
to that corresponding to the main resonance point �US�1�.
Qualitatively similar results are obtained for the uniform
flow model.

Finally, Fig. 5 shows how the spatially averaged, finite-
time Lyapunov exponent � varies with increasing US, for
both models, �=� and 2	. For the shear model and both
values of �, � varies little for US�1 but is reduced for stron-

(b)(a)

(d)(c)

FIG. 3. Density plots of the finite-time Lyapunov exponents
�t=25 time units� for the flow Ush with k=4, �=� and increasing
values of US: �a� 0, �b� 0.5, �c� 1, �d� 3..

(b)(a)

(d)(c)

FIG. 4. Density plots of the finite-time Lyapunov exponents
�t=25 time units� for the flow Ush with k=4, �=2	 and increasing
values of US: �a� 0, �b� 0.5, �c� 1, �d� 3.

FIG. 5. � versus US for both models, �=2	 and �; k=4.
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ger shear. The value of � for �=2	 is always higher than that
for �=�, at least for the values of US investigated here. This
is not surprising since the chaotic regions are more spatially
extended for a more random flow �compare Figs. 3 and 4�.
For the uniform flow model, � varies little for US�2, except
for a small decrease at US=0.5 for �=�. For larger values of
US, � decreases more steeply than for the shear model. In
both models, it seems that for US�1, the presence of a large-
scale flow affects the spatial distribution of chaos rather than
its average intensity.

V. NUMERICAL RESULTS

In this section we present the results of our numerical
MHD simulations. We solve Eq. �6� using a 2D pseudospec-
tral discretization in space and a second-order Runge-Kutta
timestepping scheme. The code is optimized to run on ma-
chines with parallel architecture.

Most runs are done using k=4, Rmk=64 and varying US
and �. A few runs are also performed for the shear model at
higher k �k=16, Rmk=64� and for both models at higher
Rm �k=4, Rmk=256�.

A. Magnetic field profile

We begin by illustrating how the small-scale magnetic
field b�x ,y , t� is influenced by a large-scale motion. Fig. 6
presents snapshots of the small-scale magnetic energy for the
shear model, US= �0.05,0.5,1 ,3� and �=� �qualitatively
similar results are obtained for shorter ��. For small shear,

concentrations of strong magnetic fields are spread through-
out the computational domain, whereas for US=3, y-directed
bands of lower magnetic activity appear. Comparison with
Fig. 3 shows that the location of strong magnetic fields is
related to the underlying Lagrangian structure of the flow.
Furthermore, as US is increased, the magnetic structures tend
to be elongated in the direction of the shear flow thus leading
to an increase of the magnetic length scale in the y direction.
The corresponding results for the uniform flow model are
given in Fig. 7 where similar observations can be made. As
expected here, the spatial period of the magnetic field is
2	 /k in the x and y directions.

B. Small-scale magnetic energy

Figs. 8 and 9 show how �bH
2 �= �bx

2+by
2� varies with US, for

different values of �, in the shear and uniform flow models,
respectively. The general trend is for �bH

2 � to decrease with
increasing US, indicating that the presence of a large-scale
flow inhibits the generation of strong magnetic fluctuations
by shearing and sweeping.

For both models, when US�0.5, �bH
2 � decreases only

slightly with US while increasing with �. Indeed, in a more
random flow, field diffusion in the kinematic regime is likely
to be enhanced by the bringing together of field lines of
opposite polarity so that the magnitude of �bH

2 � is reduced.
For US�0.5 however, this order is reversed: the curves for
the shortest value of � clearly lie above the others, the cor-
responding value of �bH

2 � decreasing monotonically as US
increases. It seems therefore that the effects of the large-scale

(b)(a)

(d)(c)

FIG. 6. Density plots of the magnetic energy normalized by its
maximum value, for the shear model, �=� and increasing values of
US: �a� 0.05, �b� 0.5, �c� 1, �d� 3. The grayscale goes from 0 �black�
to 1 �white�; k=4, Rmk=64.

(b)(a)

(d)(c)

FIG. 7. Density plots of the magnetic energy normalized by its
maximum value, for the uniform flow model, �=� and increasing
values of US: �a� 0.05, �b� 0.5, �c� 1, �d� 3. The grayscale goes from
0 �black� to 1 �white�; k=4, Rmk=64.
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motion are more significant for less random flows. To exam-
ine this in more detail, we now focus on the behavior of �bH

2 �
for longer � ��=12	 and ��.

In the shear model, �bH
2 � decreases with US at a rate �,

which varies with US. Interestingly, it seems that � becomes
smaller as US approaches �from US=0� the values satisfying
the resonance condition �26� with n=1 or 2. The decrease in
� is therefore probably due to a broad resonance. The same
phenomenon appears more clearly in the uniform flow model
where the resonance peaks are sharper. Specifically, the value
of �bH

2 � plateaus and even slightly increases when US satisfies
the condition �29� with n=1 or 2. No resonances are clearly
visible for higher values of n, owing to the small contribution
of the corresponding frequencies to the spectrum of uk �see
Sec. III A�.

We now compare the magnitude of the x and y compo-
nents of the small-scale magnetic field by showing how
�bx

2��+� and �by
2��� � vary with US in the shear model �Fig.

10� and in the uniform flow model �Fig. 11�, for �=� �quali-
tatively similar results are obtained for shorter ��.

In the shear model, both components are of the same or-
der of magnitude for US�1, whereas for stronger shear �by

2�
dominates over �bx

2� and the difference between these two
values is an increasing function of the shear amplitude. This
result follows from the anisotropy introduced by the shear as
it stretches bx in the y-direction, thus creating a strong y
component, while severely quenching the formation of the x
component by shear distortion. This is consistent with previ-
ous works by �13,14� who predicted shear-induced weak,
anisotropic turbulence.

In the uniform flow model, there is no such clear differ-
ence between �bx

2� and �by
2�. In this case, the large-scale mo-

tion only induces a drift but no direct stretching nor distor-
tion of the magnetic structures. That is, anisotropy is one of
the crucial difference between the effects of shear and mean
flows �17�.

Finally, we observe that here again the resonances are
visible for both models.

C. � effect

1. Results for Rmk=64

In this section, we present the results for � rescaled by
Urms= �U2�1/2 for k=4 and Rmk=64, starting with the shear
model. Figure 12 shows how � varies with US, for different
values of � �2	 ,12	 ,150,��. The dashed line corresponds
to relative helicity H�Ush�.

In all cases, � remains almost independent of the shear for
US up to 0.2, then, as US increases, how � is affected by the
shear depends on �. For �=2	, � decreases monotonously
with US, much faster than can be accounted for by a corre-

FIG. 8. �bH
2 � /2B0

2 versus US for the shear model and different
values of �; k=4, Rmk=64.

FIG. 9. �bH
2 � /2B0

2 versus US for the uniform flow model and
different values of �; Rmk=64. Compare with Fig. 8.

FIG. 10. �bx
2� /2B0

2�+� and �by
2� /2B0

2�� � versus US for the shear
model; �=�, k=4, Rmk=64.
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sponding decrease in the relative helicity. For longer �
�12	 , 150, ��, � decreases sharply when US=0.5 and in-
creases again to reach a local maximum for US=1, with a
value for � still an order of magnitude lower than its value in
the absence of shear. Finally, � decreases monotonously as
US is increased further. The maximum observed for US�1 is
likely to be caused by a broad resonance, since it occurs
when Eq. �26� is satisfied with n=1. This is to be contrasted
with the much sharper resonance peaks observed for the uni-
form flow model �see Fig. 14 below�. This phenomenon is
also visible for �=2	, though much less pronounced. In this
case, the chaotic flow’s spectrum contains a wider range of
frequencies, again leading to a less localized resonance.

The sharp decrease in � for US�0.5 in the case of long
correlation times remains a puzzling feature. It appears to be
caused by subtle interactions between modes at k=4 and
those at the scale of the computational domain. Indeed, in the
absence of shear, all the energy of the k=4 velocity modes
will go toward the excitation of k=4 magnetic modes. In the
presence of a small shear however, some of the energy of the
k=4 velocity mode is diverted toward exciting magnetic
modes with k=3 or 5 through direct coupling with the k=1
shear flow. Hence the � effect, which measures the correla-
tions between uk and b, is diminished �recall that uk contains
only k=4 mode�. To investigate this matter further, we per-
formed calculations for �=�, Rmk=64, and k=16. The re-
sults are presented in Fig. 13. Relations �21� imply that the
only difference between our simulations for different values
of k is the amount of scale separation between the large-scale
shear and the chaotic flow. It appears that for k=16 there is
no sharp decrease in � around US=0.5, with the results more
similar to those obtained in the uniform flow model �see Fig.
14 below�. One possible explanation for this is as follows.
For a small-scale flow with k=4, each of the k=4 magnetic
structures occupies a quarter of the entire domain, thus ef-
fectively experiencing the entire amplitude of the sinusoidal
shear flow between �0,US�. Since shearing effects are inde-
pendent of sign, all these structures are sheared in a similar
way. For k=16, however, each small-scale magnetic struc-
ture experiences only a quarter of the shear amplitude, with
some of them being subjected to weak shear only. In this
sense, increasing k leads us closer to the uniform flow ULS
�USŷ rather than the linear shear flow ULS�USxŷ.

We now turn to the description of the behavior of � in the
uniform flow model. The results in this case are presented in
Figs. 14 and 15, for �=� and �=2	 respectively. For �=�, �
starts to decrease as soon as US�0.3, but this evolution is
non monotonous, and localized resonances are visible for
US�1.25, 3 and even maybe 3	2, the most pronounced peak
being for US�3. These values approximatively correspond

FIG. 11. �bx
2� /2B0

2�+� and �by
2� /2B0

2�� � versus US for the uni-
form flow model; �=�, Rmk=64. Compare with Fig. 10.

FIG. 12. � effect versus US in the shear model for different
values of �; k=4, Rmk=64. The dashed line gives the corresponding
value of H�Ush�.

FIG. 13. � effect versus US in the shear model; �=�,
Rmk=64.
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to the condition �29� with n=1, 2 or 3. For �=2	, the results
are qualitatively similar to those obtained in the shear model.

For both models and small US, � is an increasing function
of �. This behavior is reversed with larger values of � mea-
sured for shorter � when US�0.5. To some extent, this phe-
nomenon can be understood with reference to Eq. �14� �with
US replacing U0�, even though it has been derived using
FOSA, which is not strictly applicable to our simulations,
especially for long �.

When US→0 and in the short correlation time limit, i.e.,
�max��0 , �U ·k��, Eq. �14� reduces to �� ��k2+�−1 so
that � indeed decreases with the correlation time, which is
proportional to −1. For sufficiently strong shear however,
i.e., in the limit �U ·k��max��0 ,�, �� ��k2+� /US

2, so that
� increases with , hence with decreasing correlation time.

This illustrates the fact that shear distortion is more efficient
for coherent flows, leading to a more severe reduction in �.
Note that the quenching of � as US→� scales as US

−2, as
discussed at the end of Sec. II B. This scaling is shown by
dotted lines on Figs. 12, 14, and 15. It appears that it is not
far off from the way in which � decreases with US, although
it is expected to be valid only in the limit of a strong ampli-
tude of the large-scale motion.

2. Results for Rmk=256

To assess the robustness of the results described above,
we also performed calculations at a higher magnetic Rey-
nolds number, namely Rmk=256. The shear model results
here are again obtained by using k=4.

Figure 16 presents how � varies with US in the shear
model, for Rmk=256 and two different values of � � �, and
2	, dashed lines�; the corresponding results for Rmk=64 are
shown for comparison �solid lines; these are the same results
as in Fig. 12�. For �=2	, the results for both values of Rm
superpose for most values of US �in agreement with �31� who
showed that � becomes independent of Rm for short corre-
lation time� and � decreases monotonically with US. For �
=� however, the results are remarkably different. For Rmk
=256, � increases strongly as US is increased for small shear,
then it changes sign, taking the value −0.68 for US=0.5 �not
shown�. It then becomes positive again for US=1.0 and sub-
sequently decreases for stronger shear—at least for the val-
ues of US investigated here. These results are somewhat typi-
cal of the CP flow. That the � effect can change sign in this
flow was first observed by �31�, who also showed that this
feature does not appear for short correlation times, as we
observe here �see also �32��.

The corresponding results for the uniform flow model and
�=�, presented in Fig. 17, are qualitatively different. The
value of � first increases for small shear, then it is quenched,
similarly to what happens for Rmk=64, without changing

FIG. 14. � effect versus US in the uniform flow model; �=�,
Rmk=64.

FIG. 15. � effect versus US in the uniform flow model; �=2	,
Rmk=64.

FIG. 16. � effect versus US in the shear model for different
values of � and Rmk; k=4.
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sign. Resonances are again visible for US�n	2 with n=1 or
2, as expected from Eq. �29�.

3. Temporal fluctuations in the mean emf

Many authors noted that the � effect is a very noisy quan-
tity �e.g., �44–47��; in particular, �45� argued that its fluctua-
tions should be taken into account in the mean-field equa-
tions. A recent model for large-scale dynamo action in the
presence of shear, the “incoherent �-shear dynamo,” does
just this since it relies on the interactions between a large-
scale shear flow and temporal variations in the � effect. This
mechanism could account for large-scale dynamo action in
situations when the � effect is small compared to its fluctua-
tions �6,48–50�. It is therefore relevant to complete our study
by analyzing the temporal variations of the spatially aver-
aged emf; in particular, we determine how their amplitude
depends on US.

To this end, we consider Ey�t�, the spatially averaged y
component of the emf, rescaled by B0 and Urms �so the time
average of Ey�t� gives � /Urms�. We only consider �=2	 and
Rmk=64, since for �=�, the motion is periodic in time and
large-scale dynamo action can be explained in terms of an �
effect, regardless of the temporal oscillations in Ey�t� �25�.
Figs. 18 and 19 present the probability density functions
�PDFs� of Ey�t�, for the shear and uniform flow models re-
spectively and different values of US. In both cases, the PDFs
become narrower as US increases, indicating a diminution in
the amplitude of the temporal fluctuations. Figure 20 shows
how the ratio, � say, of the time average of Ey�t� �i.e., �� to
its standard deviation varies with US. It appears that for the
uniform flow model, � remains above 0.5 for US�1 and is
sharply quenched for larger values of US. For the shear
model, � increases for small US, reaching a maximum close
to 1 for US=0.75 and decreases thereafter �except possibly
around US=3�.

For the models considered here, it seems that, for small
US, the mean value of � remains substantial and is expected

to play a dominant role in the large-scale dynamo process.
For larger values of US the situation is different and it is
possible that incoherent �-shear processes play a more im-
portant part. This issue cannot however be addressed within
the framework of this paper.

VI. DISCUSSION

In this paper, we presented a systematic numerical study
of the influence of a large-scale motion ULS, either shear or
uniform flow, on the kinematic � effect driven by small-scale
chaotic flows. Our study, which is restricted to the situation
when ULS is parallel to the mean magnetic field, shows that
the � effect is quenched by the presence of a strong, large-
scale motion. We also found that � can be enhanced via
resonances, which are more pronounced in the case when the
large-scale flow is uniform and the small-scale velocity field
has a long correlation time. The presence of the large-scale
motion also reduces the magnitude of the magnetic fluctua-
tions. We also considered how the large-scale flow affected

FIG. 17. � effect versus US in the uniform flow model; �=�,
k=1, Rmk=256. Compare with Fig. 14.

FIG. 18. PDF of Ey�t� in the shear model; �=2	, Rmk=64.

FIG. 19. PDF of Ey�t� in the uniform flow model; �=2	,
Rmk=64. The legend is given on Fig. 18.
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the temporal fluctuations in � for simulations with �=2	.
Our results clearly demonstrate that large-scale flows can
have a strong influence on the dynamics of the small-scales,
thus affecting their transport properties, and should not be
neglected.

We acknowledge that our study is limited to the specific
family of chaotic motions we used and to a restricted param-
eter regime. In particular, it is notorious that the � effect in
the Galloway-Proctor CP-flow depends strongly on the flow
parameters and on Rm in situations far from the integrable
limit �31,32�. The results we obtained for Rmk=256 and �
=� in the shear model are typical of this high variability. We
note though that our aim was not to perform yet another
detailed study of the CP-flow but rather to pinpoint shear-
induced effect, providing solid numerical verification of pre-
vious theoretical predictions. In particular, we clearly dem-
onstrated the �-quenching and the possibility of resonances
due to the influence of a large-scale motion �18,22� and
showed how these effects depended on the time statistics of
the small-scale flows.

With the aim of modeling more realistic situations, the
present work can be extended in the following several ways.
First, it would be interesting to incorporate self-consistently
the effects of the large-scale motion on the small-scale flow
by obtaining the latter as a solution of the momentum equa-

tion, including the effects of large-scale advection. Then, in
the spirit of �22� �see also �51��, the next step would be to
add the effects of the Lorentz force in order to study the
nonlinear regime and the influence of a dynamical mean field
on large-scale dynamo action.

One could also consider more realistic small-scale veloc-
ity fields, such as 3D MHD turbulence. However, there are
issues concerning the calculation and interpretation of the �
effect in the case when the turbulence is capable of small-
scale dynamo action, which is likely to be the case for 3D
flows, even at moderate values of the magnetic Reynolds
number �52�.

Lastly, recall that in this paper the large-scale flow was
taken to be aligned with the mean magnetic field and we only
determined one component of the � tensor. Combined with
shear, this component �or its temporal fluctuations� can lead
to large-scale dynamo action. However, in the absence of
shear, it is necessary to calculate all the components of the
symmetric part of � to determine the efficiency of the large-
scale dynamo process �via a so-called �2-mechanism� and
thus we need to consider the case when the mean magnetic
field and the large-scale flow are perpendicular to each other,
as was done by �28�.

Finally, the large-scale shear in our study was taken to be
a y-directed, x-dependent sine wave at the size of the com-
putational domain, while most of our simulations were per-
formed for a small-scale flow with k=4. It is thus question-
able whether there was enough scale separation between
large-scale shear and small-scale flow. When we ran simula-
tions with k=16, the results were similar to those obtained
with the uniform flow model. That is, the increased scale
separation gave us a mixture of effects induced by shear and
by large-scale advection. This effect is likely to persist in
realistic turbulence containing a broad range of scales, where
smaller eddies are both sheared and advected by larger ones.
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